原子力安全·避難計画等防災専門委員会資料

川内原子力発電所

「震源を特定せず策定する地震動」の見直し

2021年7月15日 九州電力株式会社

1. はじめに

- 2. これまでの基準地震動の策定の流れ
- 3. 改正基準の概要
- 4. 標準応答スペクトルを考慮した地震動評価結果

5. おわりに

- 2021年4月21日に「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」等が一部改正され、「震源を特定せず策定する地震動」について、標準応答スペクトルに基づく地震動の評価が新たに取り入れられた。
- 〇 当社は、再稼働以降、新たに取得した2016年熊本地震の知見や地震観 測記録等も踏まえた多面的な検討及び検証を行い、標準応答スペクトル を考慮した地震動評価を実施。
- その結果、新たに川内原子力発電所の基準地震動Ss-3を追加し、2021 年4月26日に原子炉設置変更許可申請書を原子力規制委員会に提出。
- また、本件については、安全協定に基づき、当該申請に係る事前協議 書を鹿児島県及び薩摩川内市に提出。
- 〇 以下、標準応答スペクトルを考慮した地震動の検討内容及び結果について、本日、ご説明させていただく。

2. これまでの基準地震動の策定の流れ

- 基準地震動は、「敷地ごとに震源を特定して策定する地震動」と「震源を特定せず策定する 地震動」を基に策定。
- 「敷地ごとに震源を特定して策定する地震動」は、活断層調査結果に基づき、震源パラメー タ・モデルを設定し、計算により基準地震動Ss-1を策定。
- 「震源を特定せず策定する地震動」は、震源と活断層の関連づけが困難な地震で得られた震 源近傍における観測記録である2004年北海道留萌支庁南部地震の観測記録に基づき、基準地 震動Ss-2を策定。

※1:地表に痕跡を残さず、どこでも発生する地震

※2:活断層がない場所で発生し、地表に一部痕跡を残した地震

①改正基準を踏まえた基準地震動の策定の流れ

 ○ 改正基準では、「震源を特定せず策定する地震動」のうち「全国共通に考慮すべき 地震動(Mw6.5程度未満)」について、従来の2004年北海道留萌支庁南部地震に加 え、「標準応答スペクトル」に基づく地震動の評価が新たに取り入れられた。

〔改正基準を踏まえた基準地震動の策定の流れ〕

②標準応答スペクトルの概要(原子力規制委員会) 〔地震動観測記録の収集条件〕

〔地震基盤相当面の位置〕

原子力規制委員会 震源を特定せず策定する地震動に関する検討チーム:全国共通に考慮すべき「震源を特定せず策定する地震動」に関する検討 報告書及び参考資料(2019年8月7日) に基づき作成

○ 標準応答スペクトルには、九州地方で発生した2016年熊本地震(前震・余震)、 2005年福岡県西方沖地震(余震)及び鹿児島湾の地震の計13地震が反映。

原子力規制委員会 震源を特定せず策定する地震動に関する検討チーム:全国共通に考慮すべき「震源を特定せず策定する地震動」に関する検討 報告書及び参考資料(2019年8月7日) に基づき作成

③2016年熊本地震(前震)における震源近傍の観測記録の分析(当社)

〇 2016年4月14日熊本地震(前震)におけるKiK-net益城観測点(地表)では、1000ガルを超える最大加速度を観測。

 (地下の岩盤中では、<u>NS成分:237ガル</u>、<u>EW成分:178ガル</u>、<u>UD成分:127ガル</u>)
○ 小林ほか(2017)によると、この地表における最大加速度は、深度250m付近より浅い 地盤における顕著なサイト特性の影響等によるものとされている。

○ 小林ほか(2017)では、KiK-net益城観測点の岩盤上でのはぎとり波を計算。

(<u>NS成分:302ガル、EW成分:254ガル、UD成分:212ガル</u>)

①地震動評価の概要

- 〇 「標準応答スペクトル」を考慮した地震動の評価にあたっては、まず、地震基 盤相当面において、「標準応答スペクトル」に適合する地震波形を作成。
- その地震波形に、川内原子力発電所における地震基盤相当面から解放基盤表面 までのサイト増幅特性を反映し、解放基盤表面における地震波形を作成。
 ○ サイト増幅特性の反映にあたっては、地下の地盤モデルの設定が必要。

〔地震動の評価イメージ〕

〔地震波形のイメージ〕

②地下の地盤モデルの設定

- 「敷地ごとに震源を特定して策定する地震動」の「断層モデルを用いた手法に よる地震動評価」において、地下の地盤モデルを設定していた。
- 今回、次頁に示す地震観測記録を用いた検討により、下表に示す地下の地盤モ デルのうち一部の地盤減衰の精緻化を実施。

EL.(m) 解放基盤表面 -18 5m	層	層上面 (km)	密度 <i>ρ</i> (g/cm³)	Vs (m/s)	Vp (m/s)	Q值
20.5m	1	0. 0	2. 70	1500	3200	100
-28. Jili -180m	2	-0. 01	2. 70	1600	3700	100
-1019 5m	3	-0. 462	2. 70	2150	4400	200
-1018. 5m	4	-1.0	2. 70	3010	5200	200
-2018.5m	5	-2.0	2. 70	3240	5600	300
-3018. Jill	6	-3.0	2. 70	3500	5900	300
-17018. 5m	7	-17.0	3.00	3800	6600	500
-33018. 50	8	-33. 0	3. 30	4300	7600	500

〔地下の地盤モデル〕

 ○ 再稼働審査以降も、川内原子力発電所の敷地地盤における鉛直アレイによる地 震観測を継続して実施しており、新たに、2016年熊本地震を含む58地震の観測記 録を取得。(計148地震の観測記録)

○ 敷地地盤における鉛直アレイによる地震観測記録を用いて、多面的な検討及び 検証を実施。

〔地震観測記録を用いた検討イメージ〕

○ 敷地地盤における鉛直アレイによる地震観測記録を用いて、手法A(観測記録の比に基づく分析)及び手法B(観測記録の入射・反射に基づく分析)による地盤減衰の推定を実施。

- 鉛直アレイによる地震観測記録を用いて、手法A(観測記録の比に基づく分析)によるQ値は5.9、手法B(観測記録の入射・反射に基づく分析)によるQ値は8.0。
- これを踏まえ、不確かさを考慮し、地下の地盤モデルにおける表層のQ値を 12.5と設定。

Q値:減衰を表すパラメータで、大きいほど減衰が小さい。

- 前頁で設定した地盤減衰(Q=12.5)の検証のため、地震観測記録と設定した地盤 減衰(Q=12.5)を用いたシミュレーションによる応答波の比較を実施。
- 地震観測記録とシミュレーションによる応答波は整合しており、設定した地盤減衰 (Q=12.5)の妥当性を確認。

〔検証のイメージ〕

〔検証結果の例〕

○ 前頁までの検討及び検証を踏まえ、標準応答スペクトルを考慮した地震動評価 に用いる地下の地盤モデルを設定。

〔地下の地盤モデル(精緻化後)〕

EL.(m) 解放基盤表面 -18 5m	層	層上面 (km)	密度 <i>ρ</i> (g/cm³)	Vs (m/s)	Vp (m/s)	Q値
20.5m	1	0.0	2. 70	1500	3200	12. 5
-20. Jili	2	-0. 01	2. 70	1600	3700	12. 5
-200111 480m	2'	-0. 182	2. 70	1600	3700	100
-400III	3	-0. 462	2. 70	2150	4400	200
-1018.5m	4	-1.0	2. 70	3010	5200	200
-2018.5m	5	-2.0	2. 70	3240	5600	300
-3018.5m	6	-3.0	2. 70	3500	5900	300
-1/018.5m	7	-17.0	3.00	3800	6600	500
-33018.5m	8	-33. 0	3. 30	4300	7600	500

※ 当社が実施したPS検層データによると、EL.-200m以浅の速度層に大きな差異が見られないことから、EL.-200m以浅を12.5に設定。

- 友澤ほか(2019)では、2016年熊本地震を含む九州地方で発生した地震で得られた観 測記録(川内原子力発電所を含む)に基づき、九州地方の震源特性・伝播経路特 性・サイト増幅特性の推定を実施。
- 友澤ほか(2019)で得られた川内原子力発電所のサイト増幅特性と今回の地盤減衰 (Q=12.5)を用いたサイト増幅特性を比較した結果、今回のほうが保守性が見られ、妥当性を確認。

③基準地震動の策定

〇 地震基盤相当面における模擬地震波に対して、解放基盤表面までのサイト増幅特 性を反映し、解放基盤表面における標準応答スペクトルを考慮した地震動(最大加 速度 水平:546ガル 鉛直:402ガル)を設定。

○ 標準応答スペクトルを考慮した地震動評価結果は、鉛直方向の一部周期帯で現行の基準地震動を超過するため、現行の基準地震動Ss-1及びSs-2に加えて基準地震動Ss-3を追加。

			水平方向	鉛直方向
敷地ごとに震源を特定して策定する地震動			540ガル	324ガル
電波をはウルギダウナス地電動	留萌地震	Ss-2	620ガル	320ガル
辰源を特定せり東正りる地底動	標準応答スペクトル	Ss-3	546ガル	402ガル

〔標準応答スペクトルを考慮した地震動の評価結果〕

当社は、今後とも、国の審査に真摯かつ丁寧に対応するとともに、 安全確保を最優先に、原子力発電所の安全性・信頼性向上に努めてま いります。

なお、発電所の設備については、余裕を持った耐震設計としている ため、今回の基準地震動の追加により、現行の安全確保に影響するもの ではないと考えています。

基準地震動確定後、詳細設計である設計及び工事計画認可申請に おいて、詳しい耐震評価を行うこととしており、その結果に応じて適切 に対応してまいります。